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ISOTHERMS AND GRONEISEN FUNCTIONS FOR 25 METALS 

L. V. Al'tshuler, S. E. Brusnikin, 
and E. A. Kuz'menkov 

UDC 532.593+536.715:546.3 

i. Introduction. The study of the compressibility of materials at 0~ and at room 
temperatures is traditionally one of the main directions of research in high-pressure physics. 
In works devoted to this problem the sources of experimental information are "normal" iso- 
therms recorded on static setups at T = 293~ ultrasonic data, and especially shock-wave 
determinations of the Hugoniot adiabat. Based on dynamic experiments, the zero cold-compres- 
sion isotherms Pc(P) (Pc is the pressure at T = 0; p is the density) are found [i, 2] by 
separating the shock pressures into thermal and "cold" components under acceptable assumptions 
about the Gruneisen functions, characterizing the thermal elasticity of compressed bodies. 
In the widely acclaimed work [3], the isotherms of 14 metals are calculated within the frame- 
work of the Mie-Gruneisen equations of state according to the parameters of precisely measured 
Hugoniot adiabats and the approximate relation yp = ~0P0 (~ is the temperature-independent 
Gr~neisen constant). In this manner, in particular, the standard isotherms of copper molyb- 
denum, silver and palladium, used in [4] for calibrating fluorescence ruby pressure gauges 
for the megabar range, were calculated. In [5-8], more complete equations of state, includ- 
ing the electronic components and taking into account the anharmonicity of the vibrations 
of the crystal lattice, were employed for the interpretation of dynamic experiments for the 
same purposes. The "harmonic" Gruneisen coefficients were calculated here based on different 
variants of the theory of small vibrations which, however, do not have any strict justifica- 
tions. 

Another method for constructing the curves Pc(P) of the potential interaction and the 
normal isotherms pT(p) is based on the determination of the parameters of semiempirical po- 
tentials from the isentropic K0S or isothermal K0T bulk moduli of the initial state (T = 
293~ p = 0) and their derivatives with respect to the pressure - KiS or KiT. The values 
of K0S and K0T were found in [9-11] by means of analytic approximations of the isotherms, 
recorded up to p = 4.5 GPa. Different methods of approximation yielded stable values of 
K0T and very different derivatives KiT, which determined the extrapolation behavior of the 
curves. A somewhat better results using the same information was achieved in [12] in the 
description of isotherms by the Morse potential and by taking into account the sublimation 
energy, which had a stabilizing effect. 

The isentropic characteristics of the initial compressibility and their isothermai an- 
alogs are revealed with high reliability by ultrasonic measurements at atmospheric and high 
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pressures. Ultrasonic data were employed in [13] to construct the isothermal equations of 
state of ii metals, ii ionic compounds, silicon, germanium, and sulfur. For each substance, 
based on the values of NoT and KIT, several isotherms, having at the origin a common second- 
order tangent point, were found: in a form following from the Born-Mayer potential, based 
on the equation of the M-I model 

~XoT [ 2XIT--1 1§ / 
Pro--xl T_2ka ~ --c' ~ 7' ~=PlPo, (1.1) 

proposed in [14], and based on the equation of state [13] with terms describing the kinetic, 
exchange, and correlation energy of conduction electrons. Up to a = 1.4 the different an- 
alytical curves are practically identical, but for higher values of a the isotherms of the 
last equation of state are significantly lower. 

The previously obtained equations of isotherms have the common deficiency that they 
are not unique, which is attributable to the significant uncertainty in the Gruneisen func- 
tions and differential coefficients ~i ("static" and "ultrasonic"). 

Much more accurate and reliable values of the parameters of potentials and the positions 
of isotherms for metals with smooth adiabats were obtained in this work with the use of infor- 
mation obtained by combined statistical analysis of the results of ultrasonic and shock-wave 
measurements, first carried out in [15]. The elastic constants of uncompressed metals can 
be taken from the shock-wave data because of the quasihydrostatic nature of the Hugoniot 
states owing to the peculiar relaxation of the tangential stresses at discontinuities [15, 
16] and the negligibly small effect of shock-induced melting on the form of the adiabat [17, 
18]. 

2. Basic Relations. As the result of a statistical analysis, taking into account the 
latest experimental data, in this work more accurate relations for the Hugoniot adiabats 
in the form of dependences D(u) 

D = a  o-Jr-alu and D = a o + a l u + a z u Z ~  ( 2 . 1 )  

relating the wave D and mass u velocities of shock waves, are obtained for 25 metals with 
smooth adiabats. The first coefficients in Eqs. (2.1) determine the initial isentropic bulk 
moduli 

o in P/~=o = ~os = Poal (2.2)  

and the coefficients al, characterizing the slopes of the D(u) diagrams, determine their 
derivatives with respect to the pressure 

0p/p=o = • = 4az -- 1. (2.3) 

For the two-parameter potential chosen the normal isentropes PS0 = PS0(P, ~0S, ~IS), 
passing through the initial states and having a point of second-order tangency with the shock 
adiabat at p = 0 by virtue of (2.3), are also thereby determined. 

For the Debye model of a solid with a known isentrope the normal isotherm is given by 

pro=Pso(C)--?E(~)p ~- TD --TED (2.4) 

and the zero isotherm for T = 0 is given by 

(o0/1, (2 5) Px = Pso (~)--7s TsD 
k q / J  �9 

Here R is the gas constant; A, atomic weight; ~s Gruneisen coefficient of the lattice; 
D(O/T), Debye function; 80, Debye temperature under normal conditions; To, initial tempera- 
ture; O(p) and TS, values of 0 and T under isentropic compression, determined by the rela- 
tions 
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O (9)/6)0 = T s / T  o = exp ?s (p) d I p . 
Lp o 

(2.6) 

The exact value of the function 7s is not important, since for p = P0 the second term 
in (2.4) equals zero, while for compressed states it is negligibly small compared with PS0(P). 
In what follows, in (2.4)-(2.6), the Gruneisen function of the lattice is written in the 
form 

ys =?~q-(Yo--Y~)/~m m=?o/(?o--?~) (2.7) 

with the experimental values of ~0 = T(P0, To) and ~ = 2/3 for all elements except alkali 
elements, for which ~= = 1/2. The logarithmic derivative of the expression (2.7) is close 
to the experimental derivative [19] and the asymptotic values ~ correspond to the quantum- 
statistical Gruneisen coefficients of the lattice under extreme degrees of compression [20, 
21]. According to (2.6) and (2.7), 

The method developed for revealing the cold-interaction potential curves makes it pos- 
sible to determine independently the Gruneisen functions ~(p), characterizing the thermal 
elasticity of the metal in the region of the phase diagram between the shock adiabat and 
the zero isotherm. If EH(p) and PH(P) are the internal energy and pressure of the Hugoniot 
adiabat, while ES0 and PS0 are the same for the normal isentrope, then 

= PR -- Pso + ?pP -% TsD "~o p E~ -- Eso + - i  TsD . (2 .9)  

Information about the Gr{ineisen functions, normal isentropes, and zero isotherms is 
sufficient for obtaining the caloric equations of state 

p(p, E) = Ps0(P) q-~'(P)P [E -- Es0(p ) ] ( 2 . 1 0 )  

o r  

P(P, E) = Px(P) +~(p)p[E -- Ex(9)l, ( 2 . 1 1 )  

describing the Hugoniot adiabat and the close-lying states. 

The specific form of the equations of the isentropes depends on the choice of potential, 
characterizing the interaction between the atoms andthe electrons in the metal. The equa- 
tions presented below are written in the form of functions of the parameters K0S and KIS and 
the variable z = a I/3 for the Born-Mayer potential 

3~oS Psl = ~ _  2 [z2exp ( q ( i  - -  z -a) )  . zq,: 

8 3 [gi8--' ~-~(glS--~)2-~(glS 2)]; q y -- _ 

( 2 . 1 2 )  

the Morse potential 

3•176 z~ [exp (2= ( l  - -  z - l ) ) - -  exp (a (l  - -  z-1))L = = •  i ( 2 . 1 3 )  PS2 = 

and the Berch-Murnaghan potential 

P~=g• I--7(4 • (2.14) 

Up to degrees of compression o - 1.4 the isentropes (2.12)-(2.14) are almost identical, 
so that within known limits the isentropic compressibility of the metal is described by the 
average isentrope 

~Os = (1~3)(Psi if- Ps2 q- Ps3)- (2.15) 
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In Fig. i the dimensionless functions pS/KoS are shown on a semilogarithmic scale for 
a~ = 1.7, 1.5, 1.3, and i.i (the lines 1-4, respectively). As the graph shows, the rate 
at which the functions grow depends largely on the parameters_K I = 4a~ - i, which must there- 
fore be determined accurately. The relative deviations ApSi/PS of the isentropes (2.12)- 
(2.14) from the average values (2.15) as a function of the coefficients a~ and for different 
o are shown in Fig. 2, where the lines 1-3 refer to the isentropes PSz, PS2, and PS3- The 
disagreement between the curves increases as a increases, but does not exceed • for a = 
1.4, when the pressures in the "standard" metals Cu, Ag, Mo, and Pd already reach 100-170 
GPa. The deviations for the M-I model of Eq. (i.i) fall within the same limits (broken 
lines in Fig. i). Under twofold compression the deviations from the average reach • which 
makes it important to choose the most realistic potential. 

In this work, as in [7, 8, 22], priority is given to the Born-Mayer potential. By its 
qualitative agreement with the electronic theory of metals, the first term in (2.12) reflects 
for all elements, except alkali elements, the repulsion of the overlapping shells of the 
ions, while the second term reflects the Coulomb attraction of ions and free electrons. For 
most metals studied the Born-Mayer isentropes and isotherms are close to the curves averaged 
over three potentials, and for large degrees of compression they have the correct asymptotic 
convergence to the quantum-statistical models. 
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TABLE I 

Element 

Li 
Na * 

K 

Cu* 
Ag* 
Au 
Be * 

Mg 
Zn * 

Cd * 
Al 

In * 

Pb 

V * ,  

Nb * 

Ta * 
Mo 

W 

Re 

Co * 

Ni * 
Rh * 

Pd 
Ir 

Pt 

Pmax, 
GPa 

7t 
34 
9O 

'.44 
157 
003 
91 

177 
198 
152 
208 
155 
990 
128 
t86 
224 
041 
542 
625 
t67 
438 
216 
221 
66t 
687 

7o 

0,89 
t,3t 
1,34 
1,96 
2,44 
3,06 
1,15 
t,60 
2,03 
2,28 
2,t4 
2,43 
2,74 
1,38 
t,5~ 
1,69 
1,61 
1,7C 
2,59 
t,9~ 
t,83 
2,2 c 
2,1~ 
2,3 c 
2,6~ 

0o, 

448 
t55 
t00 
3t0 
221 
378 

1031 
330 
237 
221 
390 
129 
87 

390 
260 
225 
377 
3i2 
275 
386 
345 
35O 
275 
228 
225 

%W 

4,792 
2,632 
2,026 
3,919 
3,129 
3,003 
8,028 
4,516 
3,103 
2,467 
5,292 
2,428 
t,972 
5,056 
4,444 
3,436 
5,115 
4,009 
4,169 
4,635 
4,542 
4,727 
3,917 
3,952 
3,586 

po, g/cm 3 

0,534 
0,968 
0,860 
8,930 

i0,490 
i9,302 
1,851 
1,740 
7,139 
8,639 
2,7t2 
7,278 

11,346 
6,100 
8,586 

t6,654 
t0,206 
19,224 
21,020 
8,820 
8,875 

12,428 
tl,991 
22,484 
2t,419 

ao, 
km/se( =; 

4,769 [,065 
2,627 i,208 
1,989 1,175 
3,913 i,500 
3,146 i,65t 
3,008 i,576 
7,993 i,t28 
4,5i4 i,250 
3,136 1,489 
2,474 1,642 
5,327 i,357 
2,431 t,551 
1,976 1,568 
5,072 t,t86 
4,440 t,t92 
3,402 1,230! 
5,097 1,262! 
4,005 t,255: 
4,166 t,349 
4,67111,342 
4,540 11,507 
'4,737 [1,426 
3,964 1 1,652 
3,93511,533 
3,591 1,57t 

~ao, 
km/se, 

73 
26 
25 
15 
37 
27 
5t 
40 
43 
35 
32 
34 
23 
36 
33 
19 
27 
21 
41 
44 
35 
73 
50 
8O 
41 

TABLE 2 

.IJ 
0 ! 

Na 

Cu 
Ag 
Be 
Zn 
C d  
In 
Pb 
V 
Nb 
Ta 
Co 
Ni 
Rh 
Pd 
Pt 

Pmax, 
GPa 

99 
927 - 
460 

162 
839 

863 

362 
990 
343 
409 

1t36 
434 

10t9 
498 
221 
687 

ao, I~ /  
s e a  

2,626 
3,899 
3,137 
7,958 
3,109 
2,456 
2,428 
1,976 
5,077 
4,446 
3,418 
4,630 
4,529 
4,750 
3,964 
3,591 

t,193 
1,534 
t,744 
1,212 
1:534 
1,734 
t ,588 
1,568 
1,144 
t,1t7 
t,193 
1,288 
t,545 
1,356 
t,652 
~,591 

a2-tO',  
s e c ] k m  

+0,87 
--0,96 
--0,40 
--2,74 
--1,01 
--4,43 
--1,79 
--3,26 
+2,40 
+3,85 
+2,t2 
+4,58 
--0,95 

+4,t9 
--4,53 
--2,81 

Aao, 
km/sec 

0,035 
0,023 
0,044 
0,074 
0,060 
0,042 
0,039 
0,023 
0,048 
0,041 
0,033 
0,072 
0,056 
OdO0 
0,050 
0,041 

Aa, 

0,028 
0,026 
0,08t 
0,062 
0,077 
0,056 
0,066 
0,026 
0,064 
0,061 
0,038 
0,i07 
0,056 
0,141 
0,124 
0,066 

Aat.tO= , 
sec/km 

0,410 
0,470 
2,010 
0,950 
1,310 
1,010 
t ,620 
0,480 ' 
1,350 
t,4t0 
0,800 
2,750 
0,830 
3,450 
4,910 
t,640 

ha,.i0' 

1,7 
1,3 
0,9 
0,8 
3,5 
2,2 
2,1 
1,4 
3,4 
3,0 
1,5 
3,0 
2,6 
2,8 
2,7 
1,4 
1,3 
1,6 
4,3 
2,6 
2,t 
5,6 

12,4 
6,6 
6,6 

3. Shock Adiabats and Parameters of the Potentials. The parameters of the potential 
and isentropic curves (2.12)-(2.14) are related by the relations (2.2) and (2.3) with the 
coefficients of the equations for D(u) (2.1), approximating the experimental data from ultra- 
sonic and shock-wave measurements. The statistical analysis, based on combined approximation, 
of the experimental data obtained up to 1977 was carried out in [15] for all elements exhibit- 
ing metallic properties. The more accurate relations D(u) presented below for 25 metals 
with smooth adiabats were obtained taking into account the new measurements of the shock 
compressibility of aluminum, copper, and tantalum [23] and the results of investigations 
at the Los Alamos Laboratory, which were reexamined and supplemented in the compendium of 
[24] and previously partially published in [3, 25, 26]. The amount of ultrasonic information, 
enabling reliable extrapolation to zero pressures of the bottom sections of the shock adiabats, 
is also substantially enlarged owing to the data of [27], referring to single crystals. 
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TABLE 3 

4J 
e~ 

",Cu 
ag 
.Mg 
Zn 
Cd 
A1 

. ~r = 4a,--J 

5,004-0,03 
5,604-0,14 
4,004-0,06 
4,964-0,14 
5,574-0,12 
4,47_+_0,06 

~ UiS ~.~ ~ = 4a,--I 

5,65 0,426 
5,53 2,484 
4,i6 4,76 
6,40 4,88 
6,77 7,37 
4,70 3,2i4 

4,66 J In 5,35 Pb 
4,87 Nb 
5,46 Ta 
6,17 Mo 
4,37 Ni 

5,204-0,12 
5,054-0,07 
3,774-4-0,1t 
3,92___0,06 
4,044-0,05 
5,03+_0,08 

i 

6,00 
5,72 
6,90 
3,15 
4,40 
6,20 

-g 

5,24 
6,76 

t4,51 
2,76 

11,96 
20,15 

% 

4,51 
5,40 
4,27 
4,55 
5,14 
4,74 

As an example, illustrating the accuracy and reproducibility of the dynamic experiments, 
Fig. 3 shows the Hugoniot diagrams D(u) of aluminum, copper, and tantalum together with the 
experimental data of [6, 7, 28], obtained in the USSR (points i) and in the USA in [23] (points 
2). Figure 4 (same notation as in Fig. 3) shows for the same metals the relative confidence 
errors AD/D, calculated according to the procedure of [15], for the wave velocities as a 
function of their mass velocities and the deviations of specific measurements from the regres- 
sion curve, constructed using the Shoven and Fischer criteria (points 3 in Figs. 3 and 4 - 
the most reliable volume velocities of sound CoS under normal conditions). A significant part 
of the measurements of the dynamic compressibility of metals (Fig. 4) is covered by a confi- 
dence band containing with a probability of 95% the true shock adiabat, and most experimental 
points deviate by not more than 1% from the wave velocity of the computed Hugoniot adiabat. 

The results of the statistical analysis, determining the constants in the potentials 
and the thermophysical characteristics, required for calculating the zero and normal isotherms, 
are presented in Table i, which shows the ranges of approximations of Pmax; the next columns 
shown the Gruneisen coefficients 70 and the Debye temperature @0 from [29], the initial den- 
sities according to [24], and the most reliable velocities of sound Co, as well as the regres- 
sion coefficientsao and az and their confidence intervals 5a 0 and hal'102, corresponding 
to a confidence probability a = 0.95. 

The shock adiabats of nine elements, after the statistical hypothesis that the linear 
description is applicable, was checked with the help of Fisher's criterion, were approximated 
with two terms D = ao + a,u. For the elements marked with an asterisk the initial linear 
intervals were separated with the use of the same criterion. The first two coefficients 
for the three-term relations D(u), presented in full in Table 2, are given for Pb, Pd, and 
Pt. Table 2 also shows the coefficients of the three-term polynomials for elements with 
separated linear sections. 

The coefficients a 0, close in absolute magnitude to Co, were determined with an error 
not exceeding 1.5%, leading to a 3% uncertainty in the bulk moduli. For the second parameter 
of the potentials, the confidence intervals AKzS = 4Aal for 19 elements do not exceed 0.14, 
for Re, Rh, and Ir they do not exceed 0.25, and for Pd the confidence interval does not exceed 

~Poz 
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Fig. 6 

On the whole, Table i contains all the information required to construct with the re- 
quired accuracy the normal isentropes appearing in the caloric equations of state, the normal 
and zero isotherms, and the Gruneisen functions. 

4. Normal Isotherms. For a chosen potential the normal isotherms are determined by 
the characteristics of the initial state P0, ~0, 00 and the regression coefficients ao and 
a: of the adiabats in Table i. For the Born-Mayer potential the relative volumes of the 
normal isotherms, calculated according to these parameters and the equations (2.2)-(2.4), 
(2.7), (2.8), and (2.12) in the megabar range, are presented for 21 elements in Table 4 and 
for Be and alkali elements in Table 5. 

The tabulated isotherms are compared in Fig. 5 with the static measurements of the com- 
pressibility [9, i0] up to 4.5 GPa and the isotherms calculated in [3] based on the dynamic 
adiabats and the relations yp = ~0P0 up to 200 GPa. The differences, in percent, in the 
pressures of the previous and new isotherms are shown here for three pressures: 4.5, i00, 
and 200 GPa. For the lowest pressure the experimental isotherms of eight elements agree, 
according to [9, i0], with the calculations; for tantalum and cadmium they differ in the 
pressure by 3.5%, and for copper, silver, and zinc they differ by 7-9%. The static measure- 
ments for these elements differ to such an extent from the ultrasonic data that the static 
measurements are probably not accurate. The tabulated curves deviate from the isotherms 
calculated in [3] at i00 and 200 GPa by not more than 3%. 

The comparison in Fig. 6, constructed in the p-x plane (x = P0/P), of the compressibility 
predicted in this work with the latest experimental results (points i) for the isotherms 
of Au up to 70 [30], Be up to 30 [31], and Li [32], K [33], and Na [34] up to i0 GPa is of 
special interest. Experiments with gold and potassium were performed on diamond anvils [35], 
where the pressures were determined with ruby fluorescence gages. In experiments with lithium 
and sodium x-ray diffraction pictures of the structures of LiF and NaF, whose isotherms were 
determined in [36] and used as pressure strain gages, were obtained simultaneously in the 
compression process. 

For all elements the experimental points [30-34] and previous data [ii] up to 4.5 GPa 
(points 2) for alkali metals fall with good accuracy on the isotherms computed in this work. 
The three top static measurements on beryllium are exceptions. They lie above the Hugoniot 
adiabat of beryllium [24] (the symbol 3) and therefore refer to nonequilibrium states of 
anisotropic compression. The calculations also agreed with experiments for the new crystal- 
line modifications of beryllium, lithium, and potassium, forming under pressures marked by 
the wavy lines, indicating the small effect of phase transitions occurring at high pressures 
on the elastic characteristics of the metals. 

The zero and normal isotherms of alkali metals are a traditional object of study in 
many theoretical and experimental studies [37-41]. The isotherms shown by the dot-dashed 
lines from [39], obtained by reduction of the experimental Hugoniot adiabats [37, 38], sub- 
stantially overestimate the compressibility of alkali metals. Potassium and lithium are 
realistically described by the isothermal equation [13] (broken lines), but the compressi- 
bility of sodium is overestimated even more strongly than in [39]. The adequacy of the new 
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Li 0,54 
Na t,02 
K 0,91 
Cu .9,02 , 
Ag [0,62 
Au [9,49 
Be t,86 
Mg t,77 
Zn 7,26 
Cd 8,80 
A1 2,73 
In 7,44 i 
Pb 1,59 
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ZoK 

t2,70 
7,56 
3,87 

t40,78 
t07,98 
178,59 
ti9,t6 
36,67 
73,77 
56,ti 
78,56 
45,75 
47,tt 

5,373 
6,904 
6,540 

t0,242 
t2,0t2 
tl,i31 
6,032 
7,372 

10,tt4 
tt,906 
8,538 

10,838 
t0,394 

I 0,5745 
0,266t 
0,t696 
0,0759 
0,0512 
0,0298 
0,t9t9 
0,t794 
0,08~ 
0,0496 
0,16t0 
0,0550 
0,0324 

V 
Nb 
Ta 
Mo 
W 
Be 
Co 
Ni 
Bh 
Pd 
I r  
Pt 

P0K 
i 

6,t3 
8,6t 

.t6,67 
t0,24 
19,3t 
2t,12 
8,88 
8,95 

t2,49 
t2,04 
22,58 
2t,54 

ZoK 

t58,6i 
t70,65 
193,95 
267,08 
310,77 
367,68 
t95,52 
187,52 
~8t,98 
192,23 
352,25 
~80,41 

6,66t 
6,727 
7,t48 
7,507 
7,428 
8,495 
8,4t6 

t0,324 
9,383 

t2,024 
10,628 
11,072 

0,0845 
0,0572 
0,029t 
0,0457 
0,0261 
0,0273 
0,0737 
0,0863 
0,0444 
0,0480 
0,0282 
0,0280 

P 

curves for Na and K is also confirmed by theoretical calculations of the compressibility 
[41], performed up to pressures of 30 GPa by the local-pseudopotential method. 

5. Zero Isotherms. The method, developed in this work, for determining the compressi- 
bility makes it possible to evaluate critically the previously obtained zero isotherms under 
multimegabar pressures. In [5-8] the zero isotherms of aluminum, copper, nickel, and lead 
were determined for a wide range of densities from dynamic data. Figure 7 shows (solid lines) 
in the pc(o) plane the cold-compression curves of these metals, calculated using Eq. (2.5) 
in the Born-Mayer variant. The broken curves of the Cormer-Urlin-Funtikov equations of state 
[5], which take into account realistically the electronic components and anharmonicity of 
the vibrations of the crystalline lattice, are practically identical to them. The same situa- 
tion occurs for aluminum, lead, and copper for pc(p) (dotted lines) based on close equations 
of state in [6, 7]. The appreciable overestimation of the compression pressures for nickel 
in [7] is attributable to the incorrect choice of the Gruneisen coefficient of the electrons 
(~el = 0.5), too low for transition metals. The zero isotherms (dot-dashed lines) suffer 
from the opposite problem: the "cold" pressures are strongly underestimated [8]. 

The equations of the zero isotherms in the form (2.5) contain temperature-dependent 
Debye terms, compensating the thermal components of the isentropic compression of the normal 
isentropes. To construct thermodynamically complete equations of state it is desirable to 
represent the cold-compression curves, including the pressure of the zero-point vibrations, 
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by analytical potential functions of the density only in the form (2.12)-(2.14). In the 
equations normalized to the density P0K (Fig. 8) at T = 0 and p = 0, the parameters <i are 
assumed to be constant, while the moduli K0K = P0Ka02K, are expressed in terms of P0K and 
the velocity of sound a0K at the new zero point K in Fig. 8, where p = 0 and, by definition, 
E=0. 

The value of P0K is found by exploiting the circumstance that in the Hugoniot state 
1 the energy and pressure are of a thermal nature, and, therefore, PHi = P0K$0KEHI. Since 

PIll = PoUl (ao + alul)x ~oK '~ ~0 ~K~ EH1 = E~ + ~ , ( 5 . 1 )  

we have, with the required accuracy, 

ul ~oE._._o 
a 0 

P0K=P0 i + . ( 5 . 2 )  

Equation (5.2) contains the difference of the internal energies in the states P0 and P0K 

POK 

Eo=-i + --Oa ( 5 . 3 )  

where the second term is a small fraction of E0* (of the order of 1%). Equations (5.1)-(5.3) 
determine P0K, ul, and also the velocity of the shock wave Di = a0 + alul, while the values 
of u i and DI in their turn determine the derivative of the dynamic adiabat 

(D==al) 

near the pole of the adiabat corresponding to the isentropic derivative cS12. 
on the Mie-Gruneisen equations and the relation~ 7p = Y0P0 for P0K 

a~ = C81 P0K = cS1 -- kPoK/ 7 ~  

Finally, based 

Comparison of a0K with the experimental ultrasonic data of [27] and PoK with the results 
of calculations of this quantity based on the coefficients of linear expansion presented 
for a number of metals in [42] showed good agreement with experiment. 
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TABLE 7 

~ 1  t,00 1,20 t,30 i,40 i,60 i,80 "2,00 2,20" 

Cu 

Ag 
Au 
Mg 
Zn 
Cd 
A1 
In 
Pb 
Mo 
W 
Re 
Ni 
Pd " 
Ir 
Pt 

t,96 
2,43 
3,06 
t,63 
2,03 
2,28 
2,t4 
2,42 
2,74 
1,6t 
1,7( 
2,2~ 
1,8~ 
2,18 
2,39 
2,69 

[,59 
[,94 
).,13 
1,29 
i ,65 
1,88 
1,62 
1,9t 
2,29 
1,16 
1,24 
1,5~ 
t,54 
1,4( 
t,7~ 
1,64 

1,51 
1,84 
t ,84 
1,26 
1,53 
1,78 
1,44 
1,74 
2,02 
t,06 
1,10 
1,36 
t,49 
1,12 

�9 1,62 
1,35 

t,49 
t,77 
t,73 

,1,06 
1,50 
1,76 
t,30 
1,65 
t,8i 
t,01 
t,04 
1,62 
t,48 
0,95 
t,58 
1,21 

1,44 
1,56 
1,63 
0,96 
1,43 
t,64 
1,20 
1,52 
t,52 
0,98 
0,95 
1,15 ' 
t,46 
0,68 
1,53 
t,04 

1,32 
1,35 

t , 5 7  
0,94 
1,37 
t,41 
1,t6 
1,41 
1,33 
0,95 
0,92 
I,I0 
1,37 

0,90 

,21 

,89 

,20 

,15 
,92 
,90 

1,13 

0,84 

t ,03 
0,88 

Table 6 presents the parameters of the zero isotherms, the values <oK = P0Ka~K , and the 
parameters q (2.12), calculated from the data in Table i. 

The assumptions that K I and q are constant at P0 and P0K is not completely accurate, since 
in the genera] case the derivatives of the bulk modulus with respect to the pressure are 
functions of the density. Because P0 and P0K are close, however, the difference between the 
cold-compression curves constructed from Table 5 and the results obtained from the formula 
(2.5) does not exceed 2% at the maximum degrees of compression. 

6. Gruneisen Function. The method developed for determining the potentials permits 
seeking independently the Gruneisen functions (2.9), characterizing the thermal elasticity 
of metals for states lying between the shock adiabat and the zero isotherm. The thermal 
components of the shock pressures and energies, determining ~(o) increase as the degree of 
compression increases and as the second coefficient in the dependences D(u) (2.1) increases. 
As the analysis showed, significant information about the functions 7(o) can be obtained 
for metals with a~ e 1.2. Based on this criterion, beryllium with a I = 1.132 and close 
Hugoniot adiabats and isotherms (see Fig. 6) and the alkali metals are not studied. 

The functions ~(o) for elements with linear dependences D(u) which hold throughout the 
experimental ranges are shown in Fig. 9d. The compression of metals in this group leads 
first to rapid and then to slow decrease in the thermal elasticity, which agrees qualitative- 
ly with the dynamic theory of crystal lattices. A repeated sharp drop in the curves T(o) 
is observed for o ~ 1.6 for the elements, if the upper branches of their adiabats are described 
by the dependences D(u) with negative coefficients a2 (Fig. 9a). 

The interrelated decrease in the slopes and Gruneisen functions is attributable to the 
progressive increase as a function of the degree of compression in the relative fractions 
of the thermal components and the simultaneous reduction owing to the anharmonicity of the 
lattice vibrations and thermal excitation of electrons. The same tendency determines the 
configuration of the curves ~(o) (Fig. 9c) for palladium, lead, and platinum. 

Transition metals with increasing derivatives Du' (a 2 > 0) have nonmonotonic (anomalous) 
functions y(o) (Fig. 9b). The elevated resistance of metals to shock compression is attribut- 
able here to their high electronic heat capacities and electronic Gruneisen coefficients [29]. 

Selected values of the coefficients in the ranges of dynamic experiments are presented 
for 16 elements with monotonic dependences in Table 7. 

As a whole, this work shows that the method developed has extensive possibilities and 
permits obtaining, without additional nonrigorous assumptions, reliable and accurate infor- 
mation about the isothermal compressibility and Gruneisen functions of materials with smooth 
shock adiabats from shock-wave and ultrasonic data. 

We thank T. M. Platova and E. A. Shchegolev for discussions, which stimulated this work, 
and S. V. Kasatochkin and V. V. Kechin for useful discussions of a number of aspects of this 
work. 
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PHENOMENOLOGICAL DESCRIPTION OF THE DISLOCATION MECHANISM 

OF FORMATION OF NUCLEATED DEFECTS IN PLASTIC DEFORMATION 

A. A. Movchan UDC 539.4 

The phenomenological approach to the problem of describing the process of fracture con- 
sists of introducing damage parameters and kinetic equations [i] or functionals [2] which 
give their change during loading. This approach was first used in [3, 4] to study damage 
accumulation during plastic deformation. The system of phenomenological description may 
not correspond to the micromechanism of the processes taking place, but the presence of a 
physical interpretation makes such a description more reliable. Here we attempt to construct 
a phenomenological model of damage accumulation with the well-known dislocation mechanism 
of growth of nucleated defects. 

In accordance with [5], dislocations moving during deformation encounter such obstacles 
as grain boundaries, subgrains, cells, particles of a secondary phase, etc., and accumulate 
at these sites, forming small regions with a high density of one type of dislocation. When 
the number of dislocations in the pileup exceeds a certain critical value, they combine: 
the pileup disappears and a nucleated defect takes its place. Thus, the process by which 
dislocations participate in the formation of defects can be tentatively subdivided into two 
stages: accumulation of dislocations at barriers; combination (disappearance) of the dis- 
locations with the formation of a nucleated defect. 

For the mechanism of defect formation proposed in [6] - connected with slip lines over- 
coming grain boundaries - the first stage is the accumulation of dislocations on correspond- 
ing boundaries characterized by a difference in the Burgers vector. The second stage is 
the formation of the defect (with the disappearance of the Burgers vector difference). For 
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